Необходимость в этом приборе возникает при подключении генератора параллельно к сети переменного тока или к другому генератору. Этот процесс называется синхронизацией.
Чтобы включение прошло без вреда для генератора, добиваются одновременного выполнения трех условий:
- Напряжения в сети и на генераторе совпадают по величине;
- Частота генерации равна частоте напряжения в сети;
- Угол сдвига фаз между напряжениями одноименных фаз сети и генератора равен нулю.
Напряжение на генераторе перед синхронизацией устанавливают равным напряжению сети при помощи контрольных вольтметров. Выходное напряжение регулируют изменением тока в роторе.
Для подгонки частоты генерации (fг) к величине частоты сети (fc) изменяют скорость вращения генератора. На электростанциях для этого регулируется количество пара (воды), подающегося на лопатки турбины.
С углом сдвига фаз намного сложнее. Точного равенства частоты генерации частоте сети добиться невозможно. Но, даже если выполнить это условие, равенства редко удается достичь. Процесс усложняется еще и тем, что для регулировки изменяется скорость вращения вала турбоагрегата. При многотонной массе валов промышленных аппаратов изменение скорости происходит с инерцией, которую трудно учесть.
В итоге после уравнивания частот все равно присутствует разность, называемая частотой скольжения:
Следствием частоты скольжения становится постоянное цикличное изменение угла между напряжениями сети и генератора от нуля до 360 градусов. Чем больше частота скольжения, тем быстрее изменяется угол, и наоборот.
Для визуального отображения угла между напряжениями сети и генератора нужен синхроноскоп. К нему подводятся напряжения одноименных фаз сети и генератора. Нулевое положение стрелки на нем происходит при угле, равным нулю, противоположное значение – при 180 градусах.
Стрелка синхроноскопа при синхронизации постоянно вращается. По направлению вращения определяют, больше частота генерации частоты в сети или меньше. В момент прохода стрелки через нулевое положение генератор включают в сеть.
Включение генератора в момент, когда стрелка показывает на 180 градусов, приводит к возникновению токов через обмотку статора, превышающих расчетный ток короткого замыкания. За время, пока подействует защита, этот ток успеет разрушить обмотку статора. Генератор придется отправить в капитальный ремонт.
Если генератор включить в сеть при меньших углах, но не равных нулю, через обмотку статора произойдет кратковременный бросок тока. Это тоже аварийный режим его работы. Повреждений обмотки не произойдет, но систематическое несинхронное включение агрегата в сеть со временем приведет к поломке. Поэтому несинхронное включение запрещено.
Колонка синхронизации
Для визуального контроля параметров при включении генераторов в сеть на Главном щите управления электростанций устанавливается колонка синхронизации. На ней размещаются приборы:
- Вольтметр контроля напряжения в сети.
- Вольтметр контроля напряжения на генераторе.
- Частотомер сети.
- Частотомер генератора.
- Синхроноскоп.
Иногда на колонке дополнительно ставят контрольную лампу, включенную между одной из фаз сети и генератора. Лампа меняет яркость свечения одновременно с движением стрелки синхроноскопа. При угле между напряжениями, равном нулю, она гаснет, при 180 градусах – горит в полную яркость. На передвижных электростанциях такие лампы иногда устанавливаются на всех трех фазах совместно (или вместо) синхроноскопа.
Поскольку генераторов на станциях много, предусматривается возможность для их поочередного подключения к колонке синхронизации.
Автоматические синхронизаторы
Поскольку процесс синхронизации трудно контролировать вручную, он проводится в автоматическом режиме. Для этого на электростанциях устанавливаются приборы, называемые автосинхронизаторами.
Регулирование оборотов генератора в ручном режиме выполняется ключами, подающими импульс на регулирующее устройство. На тепловых электростанциях – это электродвигатель паровой задвижки на входе турбины. Кратковременно поворачивая ключ в положения «Больше» или «Меньше», оперативный персонал открывает или закрывает задвижку. Так обеспечивается регулировка оборотов турбины. Эту же операцию выполняет и автосинхронизатор, работающий в автоматическом режиме.
Как и к синхроноскопу, к нему подключены напряжения с выхода генератора и из сети. Он постоянно контролирует их величины и выдает импульс на включение только в момент выполнения условий, перечисленных в начале этой статьи. Но с одним отличием: команда на включение генератора в сеть выдается заблаговременно, с заданной при настройке синхронизатора задержкой.
Для чего она нужна? Дело в том, что выключатель, включающий генератор в сеть, характеризуется собственным временем включения. Оно небольшое (десятые доли секунды), но этого достаточно, чтобы за время срабатывания стрелка синхроноскопа успела уйти с нулевого положения. Поэтому в настройки синхронизатора и добавляется задержка по времени, называемая временем опережения. Для каждого типа выключателя (масляного, вакуумного, элегазового) она имеет разное значение.
Автосинхронизатор не включает генератор в сеть при частоте скольжения, равной нулю. Процесс регулировки оборотов турбины настолько не стабилен, что частота вращения в любой момент может измениться. Поэтому включение происходит при небольшой частоте скольжения, отличной от нуля.
Процесс синхронизации
Включение генераторов в сеть на электростанциях происходит так.
- После выхода турбоагрегата на номинальные обороты управление им передается оперативному персоналу Главного щита управления. Персонал турбинного цеха после передачи управления не вмешивается в его работу.
- По частотомерам на колонке синхронизации персонал уравнивает частоту генерации с частотой сети, изменяя скорость вращения турбины.
- По вольтметрам на колонке синхронизации, изменяя ток в роторе, устанавливается напряжение на статоре генератора, равное напряжению сети. Выполняется это только после уравнивания частот, так как с изменением частоты изменяется и выходное напряжение статора.
- Скорость вращения турбины изменяется в большую или меньшую сторону на величину, требуемую для нормальной работы автосинхронизатора.
- Автосинхронизатор включается в работу. Анализируя величину частоты скольжения, от выдает импульсы на изменение оборотов турбины, добиваясь требуемой частоты ее вращения.
- Подогнав величину скольжения, автосинхронизатор автоматически переключается в режим измерения угла между напряжениями и вычисляет момент, когда подать импульс на включение, чтобы оно произошло при его нулевом значении. Как только этот момент будет достигнут, происходит включение выключателя.
Процесс отличается на разных электростанциях и при применении различных типов синхронизаторов. Они, как и устройства релейной защиты, прошли три стадии развития:
- релейно-механические;
- полупроводниковые;
- микропроцессорные.
При этом повышалась точность их работы, надежность и удобство применения.
Хорошая статья. Но больше интересует процесс синхронизации в домашних условиях, домашнего генератора с сетью, до момента прекращения потребления из сети, с дальнейшим отключением от нее вовсе, либо переключения соединения с ней через активные шунты, для предотвращения выдачи в сеть и компенсации ее колебаний, но оставаясь в синхроне, для будущего отключения без вреда для внутренних потребителей.
Видимо, для реализации этого желания, необходимо собрать схему с элдвигателем на одной оси с генератором и своими источниками вращающего момента, при этом элдвигатель находясь на одном валу(с демпферами) с генератором и допустим дизельным двигателем, вначале раскручивается именно дизелем, потом элдвигатель подключается к сети, что не даст падения напряжения при его включении с положения покоя и одновременно засинхронизирует генератор, который просто включается на клемы питания элдвигатели, сети и нагрузке а дизелем увеличивают мощность, до прекращения питания из сети. Возможно ли так сделать.
Спасибо за статью! Очень интересно ещё было бы почитать про типы синхроноскопов