Электрическая энергия передается по проводам, жилам кабелей, шинам. Электрический ток преобразуется в тепло в нагревательных элементах, создает вращающее магнитное поле в обмотках электродвигателей. Материалы, по которым он проходит, объединяет общее свойство: они проводят электрический ток. А свойство, характеризующее способность проводить ток лучше или хуже, называется электрическим сопротивлением.
Сопротивление материалов, называемых проводниками, относительно мало. Разница только в том, что у металлов и сплавов, использующихся для изготовления нагревательных элементов, оно повыше. За счет этого ток, проходя через них, вызывает их нагрев.
Но передача электроэнергии и функционирование всех электроприборов невозможна без материалов, имеющих противоположное свойство – не проводить ток. Такие материалы называют изоляторами.
Для проводов и кабелей изоляторами являются материалы, которыми покрыты токопроводящие жилы. Для нагревателей – термостойкое покрытие нагревательных элементов. Обмоточные провода электродвигателей покрыты тонким слоем лака. Все они выполняют функцию, сходную с водопроводной трубой: направляют ток в нужное русло, не позволяя ему попадать туда, куда не надо.
Но идеальный изолятор в обычных условиях получить невозможно. Любой материал, не проводящий ток, обладает хоть и малым, но сопротивлением. Оно настолько незначительно, что им можно пренебречь, работоспособность электрооборудования от этого не ухудшается. Но состояние изоляторов может со временем измениться. В электрооборудование попадает вода. В чистом виде она является изолятором (дистиллированная вода), но в том, в котором она существует в быту, она – проводник. Попадая на изоляционные поверхности, она ухудшает их свойства и приводит к коротким замыканиям.
Оболочки и изоляция жил кабелей и проводов со временем стареют или повреждаются. Процесс старения длится много лет, а повреждения возникают внезапно. Это можно не заметить, но начавшийся процесс ухудшения изоляции со временем развивается все быстрее, приводя к выходу оборудования из строя.
И если бы только оборудования. Короткие замыкания в кабелях или электроприборах приводят к пожарам. Ухудшение фазной изоляции приводит к появлению на корпусах электрооборудования опасных для жизни напряжений. А это уже угрожает жизни людей.
Как оценить состояние изоляции? Ведь ее повреждение происходит в местах, недоступных для осмотра. Для этой цели служат измерительные приборы, называемые мегаомметрами.
Принцип измерения сопротивления изоляции
Измерить сопротивление изоляции при помощи мультиметра не получится. Ведь, даже находясь под номинальным рабочим напряжением, она никак не проявляет признаков старения. Ток через поврежденные участки настолько мал, что его не измерить обычными методами. А через исправную изоляцию он еще меньше.
Для измерений используется напряжение постоянного тока повышенной величины. Почему постоянного? У кабелей существует небольшое емкостное сопротивление. А конденсатор проводит переменный ток. Измерения будут неточными, так как наличие емкостного тока снизит реальное значение сопротивления.
Повышенная величина напряжения нужна, чтобы заставить изоляцию стать проводником электрического тока. Кроме того, изоляция при измерении проходит испытание: выдержала повышенное напряжение, значит – и при номинальном сохранит свои характеристики. Производители рассчитывают изоляционные материалы своих изделий так, чтобы они выдерживали испытательное напряжение без повреждения. Поэтому кабели на напряжение 380 В переменного тока спокойно держат 1000 В постоянного от мегаомметра.
Принцип работы электромеханического мегаомметра
Задача любого мегаомметра – создать на измерительных выводах напряжение выбранной для измерений величины и измерить ток, проходящий по измеряемой цепи.
Сначала для генерации напряжения использовались электромеханические машины постоянного тока. Их роторы вращались при помощи рукоятки мегаомметра. Для того, чтобы генератор при измерениях выдавал номинальное напряжение, частоту вращений выдерживали в пределах 2 оборота в секунду.
Такие конструкции применялись в мегаомметрах М4100, но применяется и сейчас – в ЭСО 202. Достоинство этих приборов одно: им не требуется ни подключение к сети, ни батарейки или аккумуляторы. Но недостатков намного больше:
- Во время измерений корпус прибора сложно удержать в неподвижном состоянии. Вместе с корпусом дергается и стрелка, что снижает точность измерений.
- Показания прибора зависят от скорости вращения.
- В местах, где провода прибора при измерениях приходится держать руками (с применением диэлектрических перчаток, конечно), в измерениях участвуют два человека. Один обеспечивает контакт проводов с объектом измерений, другой – крутит ручку мегаомметра.
- При большом количестве требуемых измерений процесс происходит медленнее, чем при использовании электронных приборов.
Измерительная система электромеханических приборов – аналоговая, результаты считываются по шкале со стрелочным указателем. Дополнительный недостаток измерительной системы – шкала нелинейная, класс точности – небольшой.
Отличие современного прибора ЭСО 202 от М4100 – наличие переключателя напряжений, выдаваемых мегаомметром. Это удобно при измерениях на объектах, имеющих в составе электрооборудование, сопротивление изоляции которого измеряют при разных напряжениях. Например, кабели с напряжением 380 В (изоляция измеряется при 1000 В) и электродвигатели (500 В). В остальном приборы схожи, только переключение диапазонов измерений у М4100 производится на клеммах прибора, а у ЭСО 202 – переключателем.
Электронные мегаомметры
Следующим этапом развития мегаомметров стали электронные приборы. В них формирование испытательного напряжения осуществляет электронная схема, а измерение – аналоговый измеритель, тоже на полупроводниковых элементах. В схеме измерения ничего не поменялось, разве что пределов измерения стало больше. А вот необходимость крутить ручку устранилась.
Удобнее стало производить измерения коэффициента абсорбции. Он характеризует увлажненность изоляции. Для этого показания мегаомметра снимают через 15 и 60 секунд после начала измерения и последнее показание делят на первое. У изоляции с нормальным содержанием влаги этот коэффициент равен 1,3-2,0. Если он больше – изоляция слишком сухая, равен 1 – количество влаги в ней велико.
Крутить ручку минуту для измерения коэффициента абсорбции непросто, да и снимать показания по нелинейной шкале трудно. Да еще при этом производить отсчет времени, поглядывая на секундомер. Некоторые полупроводниковые же мегаомметры включали в себя индикатор, подающий сигналы через 15 и 60 секунд. Это позволяло оператору сосредоточиться на показаниях стрелки прибора и правильно считать их.
Но у полупроводниковых мегаомметров не было главного преимущества современных приборов – цифровой шкалы. Они были громоздкими, требовали питания от сети или батареек.
Микропроцессорные мегаомметры
Следующим этапом развития мегаомметров стали микропроцессорные приборы. Все, что необходимо для работы с ними – дисплей и кнопки, которыми задается рабочее напряжение. Остальное прибор делает сам, выдавая в итоге на дисплей конечный результат, и даже – реальную величину напряжения, которую удалось выдать на измерительный выход. При снижении значения изоляции контролируемого объекта прибор не может выдать номинального напряжения на выходе. В некоторых случаях знать это нужно.
Для измерений коэффициента абсорбции в некоторых моделях приборов не только выдается визуальный и звуковой сигнал через 15 и 60 секунд. Они фиксируют сопротивление изоляции в это время и самостоятельно подсчитывают коэффициент.
Микропроцессорные приборы компактнее своих предшественников. За счет этого появилась возможность совмещать в одном корпусе устройства различного назначения: для проверки сопротивления заземления, УЗО, петли фаза-ноль. Это удобно при выполнении комплексных измерений на объектах: работникам электролабораторий не нужно таскать с собой несколько приборов, достаточно одного.