ГлавнаяЭлектрика в вопросах и ответахЧастотный преобразователь для асинхронных электродвигателей

Асинхронный электродвигатель конструктивно прост и неприхотлив в эксплуатации. Но обладает рядом существенных недостатков:

  • ток в момент запуска (пусковой ток) превышает номинальный в несколько раз;
  • частоту вращения вала электродвигателя нельзя изменить.

Этих недостатков лишены асинхронные электродвигатели с фазным ротором и двигатели постоянного тока. Но их конструкция сложнее, а управление режимами работы требует установки громоздких магазинов сопротивлений, мощных контакторов. Управление режимами происходит с помощью релейно-контакторных схем, что снижает надежность работы.

Частотные преобразователи

Частотные преобразователи

Сохранить достоинства асинхронного электродвигателя с короткозамкнутым ротором, при этом устранив его недостатки, позволяют частотные преобразователи.

Конструкция и принцип действия частотного преобразователя

Привлекательной особенностью преобразователя является тот факт, что для него не требуется серьезных переделок в схеме управления и электропитания мотора. В простейшем случае он ставится вместо элемента управления электродвигателем: пускателя или контактора. Сигналы с кнопок управления переключаются с катушек управления на соответствующие входы.

Но вот кабель к электродвигателю и кабель от распределительного устройства до преобразователя придется заменить на экранированные. Иначе не будут выполнены условия по электромагнитной совместимости частотника, являющегося полупроводниковым прибором.

В нем происходит два основных процесса: сначала трехфазное (или однофазное) напряжение питания выпрямляется, преобразуясь в постоянное. Затем из этого напряжения формируется синусоидальное напряжение питания электродвигателя нужной частоты и величины. Делается это несколькими способами, самый распространенный из которых – широтно-импульсная модуляция. Схема управления формирует на выходе пачки коротких импульсов, которые, сглаживаясь на индуктивности обмоток электродвигателя, дают в итоге практически синусоидальное напряжение.

Для выпрямления на входе частотного преобразователя установлены полупроводниковые диоды, рассчитанные на номинальный ток устройства. Перед ними обязательно устанавливается помехоподавляющие фильтры, чтобы защитить как сам частотник от внешних помех, так и не дать проникнуть помехам от него самого в сеть, к которой он подключен. За выпрямительными диодами установлены конденсаторы, сглаживающие напряжение пульсаций.

Блок-схема работы частотного преобразователя

Блок-схема работы частотного преобразователя

Для силовой схемы формирования выходного напряжения используются мощные транзисторы или тиристоры. Поскольку в процессе работы в корпусе преобразователя выделяется тепло, для его отвода в него встраиваются кулеры, а сам прибор устанавливается вдали от горячих поверхностей. Сверху, снизу и по бокам прибора на расстояниях, указанных в паспорте завода-изготовителя, должно быть свободное пространство.

Для подключения кабелей в частотном преобразователе есть три вида клемм:

  • силовые клеммы: для подключения кабеля питания и кабеля к электродвигателю;
  • клеммы для подключения входных и выходных сигналов, как дискретных, так и аналоговых;
  • разъемы для подключения к автоматическим системам управления технологическим процессом (АСУТП).

На дискретные входы подаются сигналы управления от кнопок или реле.

Назначение дискретных входов частотного преобразователя

Пуск

Стоп

Реверс

Торможение

Выбор фиксированной скорости

Блокировка пуска

Дискретные выходы передают информацию о состоянии частоника.

Назначение дискретных выходов частотного преобразователя

Готов

Работа (двигатель включен)

Отказ (неисправность преобразователя)

Аналоговые входы предназначены для внешнего задания частоты вращения от устройств АСУ или получения частотным преобразователем сигналов от датчиков, на основе которых он принимает решение о величине частоты вращения двигателя, необходимой в данный момент.

Аналоговые выходы необходимы для подключения к устройствам отображения информации. На них частотник может выдавать значения, заданные в его установках: выходной ток, мощность, частоту вращения.

Частотный преобразователь

Частотный преобразователь

Управляет работой частотного преобразователя его мозг – блок управления. Для работы ему необходимы исходные данные: параметры электродвигателя и логика, согласно которой он будет регулировать частоту. Для их вода на передней панели прибора есть дисплей и кнопки, позволяющие эти данные ввести.

Простейшие схемы управления частотным преобразователем

С параметрами электродвигателя все просто: с таблички электродвигателя переписываются номинальные мощность, напряжение, ток и частота вращения. Затем они вводятся в память устройства. А вот с параметрами управления, в зависимости от сложности конструкции частотного преобразователя, все сложнее. Это зависит от сложности технологического процесса, схемы управления и регулирования, типа преобразователя, наличия АСУТП.

Простейшей схемой управления является ручной запуск с фиксированной частотой. Для пуска используются кнопки на самом частотнике, частота вращения регулируется вручную теми же кнопками, в зависимости от требуемой. Для ее реализации не нужны дорогостоящие аппараты, достаточно самого простого и дешевого.

С применением кнопочной станции для управления пуском и остановкой двигателя схема незначительно усложняется. Кабель от кнопок управления подключается к дискретным входам согласно схеме частотника. При этом в его настройках включается опция, разрешающее внешнее дискретное управление.

Способы автоматического регулирования частоты с использованием датчиков

Но такое использование прибора, позволяющего самостоятельно решать, какую частоту выбрать в тот или иной момент, неразумно. Рассмотрим пример его использования для поддержания постоянного уровня воды в баке водонапорной башни.

Традиционная схема управления таким насосом подразумевает наличие двух датчиков уровня: верхнего и нижнего. При понижении уровня воды до минимума срабатывание датчика приводит к запуску насоса, при достижении верхнего – к остановке. При небольшом объеме бака и повышенном потреблении воды насос часто включается и отключается.

При использовании частотного преобразователя в бак врезается датчик давления в самой нижней его точке. Сигнал с датчика пропорционален давлению столба жидкости, то есть, уровню воды в баке. Датчик подключается к аналоговому входу частотного преобразователя, в его настройках выбирается соответствующий макрос (логическая схема работы), выбирается метод задания частоты и задаются параметры, необходимые для его реализации. В нашем случае, это диапазон скоростей вращения насоса при минимальном уровне в емкости и при максимальном. В первом случае это максимально возможная частота вращения электродвигателя насоса, во втором – минимально возможное число оборотов для самого насоса (когда он еще что-то качает, а не перемалывает воду).

Теперь насос будет работать постоянно, но со скоростью вращения, зависящей от величины потребления воды из резервуара.

Таким же образом можно организовать работу насоса, питающего водопроводную сеть, используя датчик давления в напорной магистрали. В этом случае он будет поддерживать постоянным напор воды в ней.

Использование частотного преобразователя для поддержания напора в трубопроводе

Использование частотного преобразователя для поддержания напора в трубопроводе

Частотный преобразователь может управлять работой не только насосов, но и вентиляторов. Наиболее простой пример: вентиляторы охлаждения. Чем быстрее они вращаются, тем более сильный поток воздуха они создают, помещение (поверхность теплообменника) охлаждается в большей степени. Для регулирования не нужно измерять скорость потока или объем перекачиваемого воздуха. Достаточно датчика температуры, фиксирующего ее в нужной точке помещения (или на выходе теплообменника). Частотный преобразователь будет изменять скорость вращения вентилятора так, чтобы поддерживать заданное значение температуры или держать ее в допустимом диапазоне.

Управление электродвигателями грузоподъемных механизмов

Уж где необходимо изменять скорость вращения электродвигателей, так это на кранах. Для этого там используются асинхронные двигатели с фазным ротором. Но электрическую начинку крана можно сделать проще и компактнее, при этом получив в качестве бонуса еще и непревзойденную плавность регулирования скорости движения.

И все это позволят сделать частотные преобразователи. Для управления их работой в кабине машиниста устанавливаются соответствующие устройства, формирующие понятные частотнику сигналы управления. На каждый из электродвигателей приводов (подъем, перемещение тележки, перемещение моста) устанавливается по частотному преобразователю. В итоге число контакторов в схеме управления краном сводится к минимуму, что повышает его надежность.

К недостаткам относится только необходимость защиты шкафов с частотниками от пыли, но при этом нужно обеспечить их охлаждение в процессе работы.

Промышленные установки с системами АСУТП

Уходят в небытие времена, когда операторы вращали вручную задвижки, а регулировку подачи сырья на конвейере выполняли, перекрывая шибером его поток. Современные операторы технологических установок в чистой спецовке сидят за мониторами обыкновенного компьютера, связанного со щитовой АСУ. Любой параметр процесса меняет кликом мышки, результат которого преобразуется либо в команду «включить/выключить», либо в изменение сигнала управления. Важную роль в этом раю играют частотные преобразователи.

Функциональная схема АСУТП на предприятии

Функциональная схема АСУТП на предприятии

Для привода того же конвейера всегда использовались асинхронные электродвигатели. Поэтому для перевода его на управления с помощью частотного преобразователя не требуется глобальных переделок, даже мотор можно оставить тот же самый. Но при этом получается выигрыш в точности ведения процесса (количество перемещаемого продукта задается частотой вращения привода, то есть – скоростью движения ленты), а также – экономится электроэнергия.

Система для удаленного управления насосной

Система для удаленного управления насосной

Для регулировки используется два способа:

  • с использованием аналогового входа, когда АСУТП выдает на каждый частотный преобразователь персональный сигнал управления;
  • с использованием интерфейсных модулей, когда управление происходит по одной шине несколькими приборами в цифровой форме по системному протоколу.

Важной особенностью этого подходя является тот факт, что частотник уже ничего не решает сам, все за него выполняет АСУ. Она принимает сигналы от датчиков, характеризующие состояние технологического процесса. Затем по заданной программе принимает решение, что делать дальше.


Комментарии

Частотный преобразователь для асинхронных электродвигателей — Комментариев нет

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

одиннадцать + семнадцать =

1441897143_award_star_gold_2Спасибо, что читаете нас!

Поделитесь ссылкой на наш сайт своим друзьям в соцмедиа!

setTimeout(function(){ ga('send', 'event', 'New Visitor', location.pathname); }, 15000);